Planar lipid bilayers containing gramicidin A as a molecular sensing system based on an integrated current.
نویسندگان
چکیده
The channel activity of gramicidin A in free-standing planar lipid bilayers with different charges of polar head groups and various lengths of hydrocarbon tails were analyzed in terms of the channel conductance, the lifetime of channel events and the magnitude of integrated currents. The channel activity of gramicidin A in lipid bilayers is tunable by adjusting the membrane composition. The in situ coupling of the anti-BSA antibody as a model protein to the amine moiety of phosphatidylethanolamine (PE) in a lipid bilayer by the amine coupling method allowed us to design an antigen (BSA)-sensitive interface, in which the integrated current, rather than the frequency of channel event, can be used as an analytical signal. The potential of the present system for highly sensitive and selective detection of BSA at 10(-9) g/mL level is demonstrated.
منابع مشابه
Pore-forming compounds as signal transduction elements for highly sensitive biosensing.
Pore-forming compounds are attracting much attention due to the signal transduction ability for the development of highly sensitive biosensing. In this review, we describe an overview of the recent advances made by our group in the design of molecular sensing interfaces of spherical and planar lipid bilayers and natural bilayers. The potential uses of pore-forming compounds, such as gramicidin ...
متن کاملHighly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip.
We developed a highly reproducible method for planar lipid bilayer reconstitution using a microfluidic system made of a polymethyl methacrylate (PMMA) plastic substrate. Planar lipid bilayers are formed at apertures, 100 microm in diameter, by flowing lipid solution and buffer alternately into an integrated microfluidic channel. Since the amount and distribution of the lipid solution at the ape...
متن کاملCharging the Quantum Capacitance of Graphene with a Single Biological Ion Channel
The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a ch...
متن کاملA Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedanc...
متن کاملCationic cell-penetrating peptide binds to planar lipid bilayers containing negatively charged lipids but does not induce conductive pores.
Using a cation-selective gramicidin A channel as a sensor of the membrane surface charge, we studied interactions of oligoarginine peptide R9C, a prototype cationic cell-penetrating peptide (CPP), with planar lipid membranes. We have found that R9C sorption to the membrane depends strongly on its lipid composition from virtually nonexistent for membranes made of uncharged lipids to very pronoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2012